05103 Anemoveleta
Medidas de viento fiables y precisas
Compatible con la mayoría de dataloggers Campbell Scientific
meteorología aplicaciones agua aplicaciones energía aplicaciones flujo gas y turbulencia aplicaciones infraestructuras aplicaciones suelo aplicaciones

Resumen

El 05103 Wind Monitor es un instrumento ligero y robusto que mide la velocidad y dirección del viento en duras condiciones ambientales. Su simplicidad y construcción resistente a la corrosión, lo hacen ideal para su uso en un amplio abanico de aplicaciones. Fabricado por R. M. Young, este sensor de viento se integra fácilmente con nuestros dataloggers Campbell Scientific.

La longitud de cable no debe exceder 304 m (1000 ft) 

Leer más

Ventajas y características

  • Suficientemente robusto para uso en duras condiciones ambientales
  • Compatible con interfaces serie CWS900, para usarse en redes de sensores inalámbricos
  • Construido en material termoplástico que resiste la corrosión de ambientes marinos y de contaminantes atmosféricos
  • Usa cojinetes de bola de precisión, en acero inoxidable, en el eje de la hélice y en el vertical
  • Ideal para estudios de perfil del viento
  • Compatible con el LLAC4 4-channel Low Level AC Conversión Module, el cual incrementa el número de anemómetros que puede medir un datalogger

Imágenes

Descripción detallada

The 05103 Wind Monitor is made out of rigid UV-stabilized thermoplastic with stainless steel and anodized aluminum fittings. The thermoplastic material resists corrosion from sea air environments and atmospheric pollutants. It uses stainless-steel precision-grade ball bearings for the propeller shaft and vertical shaft bearings.

The 05103 measures wind speed with a helicoid-shaped, four-blade propeller. Rotation of the propeller produces an ac sine wave that has a frequency directly proportional to wind speed. The ac signal is induced in a transducer coil by a six-pole magnet mounted on the propeller shaft. The coil resides on the non-rotating central portion of the main mounting assembly, eliminating the need for slip rings and brushes.

Wind direction is sensed by the orientation of the fuselage-shaped sensor body, which is connected to an internal potentiometer. The datalogger applies a known precision excitation voltage to the potentiometer element. The output is an analog voltage signal directly proportional to the azimuth angle.

Especificaciones

Applications Harsh (Rain with light snow. Little or no riming. Some blowing sand. No salt spray.)
Sensor Helicoid-shaped, 4-blade propeller and fuselage-shaped sensor body
Measurement Description Wind speed and direction
Operating Temperature Range -50° to +50°C (assuming non-riming conditions)
Mounting Pipe Description
  • 34 mm (1.34 in.) OD
  • Standard 1.0-in. IPS schedule 40
Compliance with Standards
  • 2011/65/EU RoHS Directive
  • 2015/863/EU RoHS Phthalates Amendment
Housing Diameter 5 cm (2.0 in.)
Propeller Diameter 18 cm (7.1 in.)
Height 37 cm (14.6 in.)
Length 55 cm (21.7 in.)
Weight 1.5 kg (3.2 lb)

Wind Speed

Range 0 to 100 m/s (0 to 224 mph)
Accuracy ±0.3 m/s (±0.6 mph) or 1% of reading
Starting Threshold 1.0 m/s (2.2 mph)
Distance Constant 2.7 m (8.9 ft) 63% recovery
Output ac voltage (three pulses per revolution)

90 Hz (1800 rpm) = 8.8 m/s (19.7 mph)
Resolution (0.0980 m s-1) / (scan rate in seconds) or (0.2192 mph) / (scan rate in seconds)

Wind Direction

Mechanical Range 0 to 360°
Electrical Range 355° (5° open)
Accuracy ±3°
Starting Threshold 1.1 m/s (2.4 mph) at 10° displacement
Distance Constant 1.3 m (4.3 ft) 50% recovery
Damping Ratio 0.3
Damped Natural Wavelength 7.4 m (24.3 ft)
Undamped Natural Wavelength 7.2 m (23.6 ft)
Output
  • Analog dc voltage from potentiometer (resistance 10 kohm)
  • Linearity is 0.25%.
  • Life expectancy is 50 million revolutions.
Voltage Power switched excitation voltage supplied by data logger

Compatibilidad

Nota: lo siguiente muestra información de compatibilidad notable. No es una lista de todos los productos compatibles.

Dataloggers

Producto Compatible Nota
CR1000 (retired)
CR1000 (retired)
CR1000 (retired)
CR1000X
CR200X (retired)
CR216X (retired)
CR300
CR3000 (retired)
CR310
CR350
CR5000 (retired)
CR6
CR800
CR850
CR9000X (retired)

Miscelaneo

Producto Compatible Nota
21X (retired)
CR10 (retired)
CR10X (retired)
CR23X (retired)
CR500 (retired) Measurements are typically processed for output with the Wind Vector instruction, which is not present in the CR500.
CR510 (retired)
CR9000 (retired) Measurements are typically processed for output with the Wind Vector instruction, which is not present in the CR9000.
CR9000 (retired)

Información de compatibilidad adicional

Mounting

The 05103 can be attached to a CM202, CM202SS, CM203, CM204, CM204SS, or CM206 crossarm via a 17953 Nu-Rail fitting or CM220 Right-Angle Mounting Kit. Alternatively, the 05103 can be attached to the top of our stainless-steel tripods via the CM216 Sensor Mounting Kit. Please note that a lightning rod cannot be used when the CM216 attaches a 05103 atop the tripod’s mast. Therefore the CM216 is only recommended for mounting these sensors if the deployment is short term.

Wind Profile Studies

Wind profile studies measure many wind sensors. For these applications, the LLAC4 4-Channel Low Level AC Conversion Module can be used to increase the number of Wind Monitors measured by one data logger. The LLAC4 allows data logger control ports to read the wind speed sensor’s ac signals instead of using pulse channels. Data loggers compatible with the LLAC4 are the CR200(X) series (ac signal ≤1 kHz only), CR800, CR850, CR1000, CR3000, and CR5000.

Data Logger Considerations

The 05103's propeller uses one pulse count channel on the data logger. Its wind vane requires one single-ended channel and access to an excitation channel (the excitation channel can be shared with other high impedance sensors).

Programming

The 05103's propeller is measured by the PulseCount Instruction in CRBasic and by Instruction 3 (Pulse Count) in Edlog. The wind vane is measured by the BrHalf Instruction in CRBasic and by Instruction 4 (Excite-Delay-SE) in Edlog. The measurements are typically processed for output with the Wind Vector instruction (not present in the CR500 or CR9000 but is present in the CR9000X).

Preguntas frecuentes

Número de FAQs relacionadas con 05103: 13

Expandir todoDesplegar todo

  1. Yes, but this is not a standard product that Campbell Scientific offers. We can, however, order one from the manufacturer (R. M. Young).

  2. This depends on what is broken. Typically, Campbell Scientific can repair the unit, and the user does not have to purchase a new one.

  3. The measurement instructions will likely remain the same. However, in addition to the multiplier and offset, the type of pulse may change for the wind speed, and the excitation voltage may change for the wind direction. For an explanation of how the datalogger needs to be programmed, see the instruction manual.

  4. The short answer is less than 0.01 mA. The wind speed signal requires no power. The wind direction portion of the sensor only uses a maximum of 0.5 mA when excited with 5 Vdc, and then it is only on for 0.016 s for every measurement. When the wind direction is measured every second (typical), the average current drain is less than 0.01 mA.

  5. Orientation of the wind monitor is done after the datalogger has been programmed, and the location of True North has been determined. True North is usually found by reading a magnetic compass and applying the correction for magnetic declination, where magnetic declination is the number of degrees between True North and Magnetic North. Magnetic declination for a specific site can be obtained from a USFA map, local airport, or through a computer service.

    1. Using Short Cut, click the applicable wind direction sensor in the Selected Sensors list of the Outputs screen.
    2. The two output options enabled are Sample and WindVector. Select WindVector.
    3. The WindVector instruction has output options. Select an option with mean wind direction in it.
  6. Not every sensor has different cable termination options. The options available for a particular sensor can be checked by looking in two places in the Ordering information area of the sensor product page:

    • Model number
    • Cable Termination Options list

    If a sensor is offered in an –ET, –ETM, –LC, –LQ, or –QD version, that option’s availability is reflected in the sensor model number. For example, the 034B is offered as the 034B-ET, 034B-ETM, 034B-LC, 034B-LQ, and 034B-QD.

    All of the other cable termination options, if available, are listed on the Ordering information area of the sensor product page under “Cable Termination Options.” For example, the 034B-L Wind Set is offered with the –CWS, –PT, and –PW options, as shown in the Ordering information area of the 034B-L product page.

    Note: As newer products are added to our inventory, typically, we will list multiple cable termination options under a single sensor model rather than creating multiple model numbers. For example, the HC2S3-L has a –C cable termination option for connecting it to a CS110 instead of offering an HC2S3-LC model. 

  7. Most Campbell Scientific sensors are available as an –L, which indicates a user-specified cable length. If a sensor is listed as an –LX model (where “X” is some other character), that sensor’s cable has a user-specified length, but it terminates with a specific connector for a unique system:

    • An –LC model has a user-specified cable length for connection to an ET107, CS110, or retired Metdata1.
    • An –LQ model has a user-specified cable length for connection to a RAWS-P weather station.

    If a sensor does not have an –L or other –LX designation after the main model number, the sensor has a set cable length. The cable length is listed at the end of the Description field in the product’s Ordering information. For example, the 034B-ET model has a description of “Met One Wind Set for ET Station, 67 inch Cable.” Products with a set cable length terminate, as a default, with pigtails.

    If a cable terminates with a special connector for a unique system, the end of the model number designates which system. For example, the 034B-ET model designates the sensor as a 034B for an ET107 system.

    • –ET models terminate with the connector for an ET107 weather station.
    • –ETM models terminate with the connector for an ET107 weather station, but they also include a special system mounting, which is often convenient when purchasing a replacement part.
    • –QD models terminate with the connector for a RAWS-F Quick Deployment Station.
    • –PW models terminate with the connector for a PWENC or pre-wired system.

Casos de aplicación

France: Dynamic Agrivoltaism
Dynamic photovoltaism is a system combining an agricultural crop (viticulture, arboriculture, field crops, or market......leer más
France: Dynamic Agrivoltaism
Dynamic photovoltaism is a system combining an agricultural crop (viticulture, arboriculture, field crops, or market......leer más
Texas: Water Conservation
The city of Frisco, Texas, sits in an area that experienced severe drought from about......leer más
Texas: Water Conservation
The city of Frisco, Texas, sits in an area that experienced severe drought from about......leer más
South Africa: Solar Prospecting
Historically, the South African energy sector had been monopolized by a single state-owned utility company......leer más
Colorado: RWIS Data from ALERT System
Networks using the ALERT protocol are designed to give immediate access to data that indicates......leer más
West Texas Mesonet
The West Texas Mesonet (WTM) project was initiated by Texas Tech University in 1999 to......leer más

Artículos y notas de prensa